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Random Walks  on a Lattice 
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This paper discusses the mean-square displacement for a random walk on a 
two-dimensional lattice, whose transitions to nearest-neighbor sites are symmet- 
ric in the horizontal and vertical directions and depend on the column currently 
occupied. Under a uniform density condition for the step probabilities it is 
shown that the horizontal mean-square displacement after n steps is asymptoti- 
cally proportional to n, and independent of the particular column configuration. 
The model generalizes that of Seshadri, Lindenberg, and Shuler and the argu- 
ments are essentially probabilistic. 

KEY WORDS: Random walk; random lattice; periodic lattice; recurrence 
relations. 

1. INTRODUCTION 

In a recent paper, (1) there is a detailed study of a random walk on a class 
of two-dimensional lattices, namely, those with two types of columns called 
"strong" and "weak" which have different scattering characteristics. Prop- 
erties of the walk investigated included the mean-square displacements of 
the horizontal and vertical components of the walk, the probability of 
return to the origin, and number of distinct lattice sites visited. 

All these properties were successfully analyzed in the case when the 
two column types formed a strictly periodic array. For the mean-square 
displacements, a proof was given for a completely general array of types 
with an asymptotic density of strong columns. However, there is an 
oversight in this proof which it is not easy to overcome; further elucidation 
is given in Section 3. Section 4 contains a different approach to the 
problem, which requires only simple probability theory and no Fourier 
transforms, matrix algebra, or Tauberian theorems. The result proved there 
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permits any number of column types and generalizes the strictly periodic 
case although it still imposes a fairly stringent restriction on the column 
array; roughly, it requires that an asymptotic density exists uniformly over 
the array. This approach gives a particularly elementary proof for the 
two-type periodic case. The paper concludes with discussion in Section 5. 

2. THE MODEL 

We consider a slight generalization of the model in Ref. 1, in which a 
random walk at a lattice site on co lumnj  moves with probabilitypj to either 
horizontal neighbor and with probability �89 - p j  to either vertical neighbor 
at each step. Thus the transition mechanism of the walk depends only on 
which column the walker is presently located. Because of the symmetry, it 
is easy to see, as in Ref. 1, that the mean-square displacement after n steps 
is n. Thus we consider in detail only horizontal movements, described more 
formally as follows. 

Let X -- {An) (n = 0, 1 . . . .  ), X 0 = 0, be a symmetric random walk on 
the integers Z. Thus Xn is an integer-valued random variable representing 
the position of X after n steps. The transition probabilities are 

Prob(Xn+ 1 = j  _+ l IX, - - j )  --pj. 

Pr~ 1 - - J l  X.  - - j )  = 1 - 2pj 

f o r j  E Z and n = 0, 1 . . . . .  
For any positive integer M, let E -  (rM, r ~ 7/). Clearly, X proceeds 

via a series of increments between its successive visits to E. Let 

T,. = step-number of ith visit to E by X (i = 1, 2 . . . .  ), T o = 0 

~i= XT, ( i =  l ,2  . . . .  ), 4 o = 0  

~-i = T,. - T/_I (i = 1,2 . . . .  ) 

v, = max(v  : T, < n) (n = 0, 1,2 . . . .  ) 

V i = ~ i - ~ i _ l ( i =  1,2 . . . .  ) 

Note that Yi takes only values - M, O, M. 
The condition we impose on the pj's is as follows. For some 

0 < y < ~ ,  

, _ 0  (U)  lira sup 7 ~ 
l--->m rET/ j=r  

Note that this is certainly satisfied for any strictly periodic array of 
columns, for which there exists a positive integer (2 such that 

pj = pj+Q, j ~ Z 
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3. PREVIOUS WORK 

As mentioned in the Introduction the case of two column types, strong 
and weak, is treated in Ref. 1. For ( x f ) ,  there is a result analogous to 
our theorem except that (effectively) (U) is replaced by a much weaker 
condition not containing the sup term. The method of proof is to take 
an associated periodic lattice, with periodic continuation of column 
0 . . . . .  N - 1, prove the theorem for each N and then let N ~ oo. 

Unfortunately, this program involves a change of order of limiting 
operations. Such manipulation is not in general valid and requires careful 
justification in any particular case; typically, a version of uniform conver- 
gence needs to be invoked. The point of difficulty in Ref. 1 is Eqs. (B14) 
and (B15), where it is not shown that the O(A ~ term in (B14) is still O(A ~ 
in (B15) after multiplication by N and N ~ oo. 

It seems to be very difficult to resolve whether the interchange is in 
fact valid. Consequently, we present a different and, we believe, simpler 
approach to the problem under the more restrictive hypothesis (U), which 
still covers the periodic case that occupies nearly all the analysis in Ref. 1. 

4. RESULTS 

Using three lemmas proved in the Appendix, we can establish the 
following theorem. 

Theorem. Under condition (U), 

X \ 2n  
n / ~  T 

Proof. Define 
v~+l 

wo=x  o+= 
i=1 

We first find the variance of IV. and then calculate the variance of X, from 
it. Write 

wo = E (1) 
i=1 x~Z 

where I A is the indicator function of the event A. Then 

(W.)= ~ E (Y,I(..+l>*3I(~,_,=xu}) 
i=1 xE~ (2) 

(W2) = ~" k 2 E YiYjI{v.+l>i}I{~.+ >j} 
i=l j=lx@ZY~Z ( 1 

• I(~_l= xM )I{~j_t=yM }) 
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Now the events { v. >/ i -  1 } and (~i-1 m_ xM } depend only on the 
history of X before T i_ l, and Y,. depends on this history only via ~g_ 1. Since, 
by Lemma 1, (Yg 1(i-1 = xM)  -= 0 for all i, ( IV.)  = 0. A similar argument 
shows that the mean in (2) is zero if i ~ j whence, by Lemma 1, 

oo 

( W~ ) = 2M E E PxM~r(i,x,n) (3) 
i = l  x ~ Z  

where 

7r(i, x, n) ~ ( I{ . .+,> i}I(~i_l= x m  }~ 

TO calculate the sum in (3), consider 
v . + l  

V. = ~ $i (4) 
i = 1  

obviously V. > n. Express (4) as in (1). which gives 

( V . )  = ~ ~ (riI(..+,>i}I(~,_,=xM}) (5) 
i = l  xEP7 

As above, ~'i depends on the two events in (5) only via ~i-~. In general ~i-1 
does influence the conditional mean of r (see Lemma 2). However, under 
(U), we may use Lemma 3 to get, from (4) and (5), 

n < M(7 + e) ~ ~ PxMTr(i,x.n) (6) 
i = 1  x ~ T  

To obtain a converse inequality to (6), define new variables 

r}B) = I "ri if T i < B 
( B if q'i ~ B 

with corresponding p~'), V~B); clearly ~ ' )  /> p~. Then, since the sum- 
mands in (4) are now bounded, 

n + B  ~>(V~B))= ~ ~ (r}B)I(.~:,+,>i)I(,,_,=xM}) (7) 
i = l  x E ~  

For B sufficiently large. 

('c} ") I~- ,  = xM ) >1 (1 - , ) ( r  i I~,-, = xM ) (8) 

By Lemma 3 and (8), (7) gives 

n + B  >I M(I-,)(y-2r Z exM(l(d"+'>')l(~,-,=~M)) 
i=I x~2~ 

> M(I - ~)(~, - 2~) ~ ~,, pxg~(i,x,n) (9) 
i=l x~?/ 
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Given any E > 0, we therefore have from (3), (6), (8), and (9) that, for 
M and B sufficiently large, 

2,, < 
g + e  

Write 

where 

Thus 

2(n + B) 

(1 - c ) ( y - 2 e )  

X n  = V~'rn --  ~n 

0 4 % < M  

By the Cauchy-Schwarz inequality and (12), 

))'/2 
Combining 00)-(14) gives 

2 <l iminf --X~ <limsup - ~  4 
y + ~ n~.oo n n-~.oo 

Since c is arbitrary, we have 

as required. I I  

lirn --if- - - ~  

Corol lary 1. 

2(1 + 

(1 - Q2(y _ e) 

If the pj are periodic, with period Q, then 

( X f ) ~ 2 n  --~ .= ~) 

(lO) 

(11) 

(12) 

(13) 

(14) 

Corol lary 2. If there are only strong or weak columns let S represent 
the set of strong columns. If pj = O, ( j  ~ S), pj = ~p otherwise, and 

lim sup 1 ~ 1 a 
7 jE[r ,  - -  / = 0 l ~ o o  r E Z  / ] A S  

then 

Proofs of these corollaries are obvious. 
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5. DISCUSSION 

The way this paper avoids the problem mentioned in Section 3 is by 
the uniformity included in condition (U). In a sense, then, we have 
assumed the problem away! Nonetheless, (U) still seems sufficiently useful 
in its own right to merit the study. It covers all strictly periodic cases. It also 
handles the case when, say, every Mth column belongs to S and there is a 
set proportion of strong columns between them, not necessarily with strict 
periodicity. Both these situations are mentioned in Ref. 1. Note that (U) is 
not satisfied for a two-type column array generated by independent Ber- 
noulli variables, since with probability one any such array will contain an 
arbitrarily long run of one type of column. 

We note that the methods of this paper also provide an exceptionally 
simple direct proof of Corollary 1, which is a generalization of the result in 
Ref. 1 for any strictly periodic array of columns. For then the Yi and ~'i are 
independent and identically distributed random variables, the E points are 
regeneration points of the process, and X, is a cumulative process. By 
Theorem 8 of Smith, (2) since (Yi) = 0, we can immediately say that 

<X2n >--n<r,2>/('ri> 

The elementary lemmas 1 and 2 easily give us the two means, since (A.3) 
becomes 

Thus in this special case the only algebra needed is the solution of two sets 
of recurrence relations, in contrast to the formidable machinery of Ref. 1. 
This approach also shows clearly, from (15), why it is the totalities of 
column types and not their positions, which affect the solution. 

The methods of this paper do not appear to help with the other 
problems treated in Ref. 1. 

It has been pointed out to us that a more general result, namely, the 
asymptotic normality of X,, can be proved under the weaker condition of 
(effectively) (U) without the supremum. The result of this paper under the 
weaker condition follows as a corollary. However, the methods required are 
of some technical complexity, whereas hopefully the approach presented 
here provides a simple guide to the probabilistic format for handling such 
problems. Note that, in the periodic case, the asymptotic normality comes 
directly from Theorem 9 of Smith. (2) 
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A P P E N D I X  

We prove here three simple probability lemmas. 

L e m m a l .  F o r i = l , 2  . . . . .  

( r,l,~,_, = x M )  = 0  

( Y~ZI~i_, = x M  ) = 2pxMM 

Proof. Consider i = 1. Let 

fj = Pr(X reaches M before 0 from j )  j ~ (0, 1 . . . . .  M ) 

Clearly, 

f j  = p j j + ,  + (1 - =ej)f j  + P j f j - 1  ( j  = 1 . . . .  , M -  1) 
(A.1) 

/ 0 = 0 ,  f M = I  
From (A. 1), 

fj+, - =fj + f j _ ,  = 0 

which implies that fj is linear in j .  The coefficients are determined by the 
boundary conditions, giving 

fj =j/M. 
Since the same result holds for reaching - M  before 0, starting from 

j E ( -  M . . . . .  - 1,0), we get 

Pr(Y, = +_ M )  = p o / M ,  Pr(Y, = 0) = 1 - 2po/M (A.2) 

For general i, the same argument holds, after conditioning on ~i-1, the 
E point from which the ith increment starts, with PxM replacing P0 in (A.2). 
The lemma is now obvious. �9 

L e m m a  2. F o r  i = 1,2 . . . . .  

) < , r i l g ; i _ l = X M ) = l + _ ~  ~ ( 1 + 1 (1.3) 
k = 1 j = 1 P x M  + j  P x M - j  

Proof. Consider i = 1. Define, f o r j  = 0, 1 . . . . .  M, 

mj = (number of steps to reach 0 or M from j> 

Clearly, 

mj = 1 + pjmj+ l + (1 - 2pj)mj + pjmj_, 

m o = m M = 0 

From (A.4), 

mj.+l - 2mj + mj_ l 

( j =  1 . . . .  , M - 1 )  
(A.4) 

= - 1 /pj  (A .5 )  
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Sum (A.5) ove r j  = 1 . . . . .  k and then over k = 1 . . . . .  M - 1 to get 

M - I  k 
1 m,=~ E E 1/pj 

k=l  j = l  

Similarly, for the range (0, - 1 . . . . .  - M), 

M-1 k 
1 

m - l = ~  E E 1/p_j 
k = l  j = l  

Since 

0-1) = 1 + p0(ml + m_ 1) (A.6) 

the lemma is proved for i = 1. For general i, the same argument holds after 
conditioning, with PxM replacing P0 in (A.6). �9 

I .emma 3. Under condition (U), given any e > 0, 

MpxM(  ~ -- 2•) < ("/'i 1~i-1 = x M  ) < MpxM(" [ .-1- c) 

for M sufficiently large. 

Proof. Given any e > 0, and choosing M sufficiently large, we have 

M - I  k M-1 
M 

1M ~ ~ l < r  --M1 k=~Mok(V+r162162 k=l j= l  

using (U), where M 0 is a constant depending on r Similarly, 

M - I  k 

There are identical bounds for the other sum in (A.3). Thus given any 
r  

Mpx M (~ -- 2E) < (Ti[~i_l = x M  ) < M1)~cM (]f -~ E) 

for all sufficiently large M, as required. 
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